Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Control ; 21(4): 279-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25310209

RESUMO

BACKGROUND: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with an aggressive clinical course. Most patients with BPDCN have skin lesions and simultaneous involvement of the peripheral blood, bone marrow, and lymph nodes. METHODS: A search of PubMed and Medline was conducted for English-written articles relating to BPDCN, CD4(+)CD56(+) hematodermic neoplasm, and blastic natural killer cell lymphoma. Data regarding diagnosis, prognosis, and treatment were analyzed. RESULTS: BPDCN is derived from precursor plasmacytoid dendritic cells. The diagnosis of BPDCN is based on the characteristic cytology and immunophenotype of malignant cells coexpressing CD4, CD56, CD123, blood dendritic cell antigens 2 and 4, and CD2AP markers. Multiple chromosomal abnormalities and gene mutations previously reported in patients with myeloid and selected lymphoid neoplasms were identified in approximately 60% of patients with BPDCN. Prospectively controlled studies to guide treatment decisions are lacking. The overall response rate with aggressive acute lymphoblastic leukemia-type induction regimens was as high as 90%, but the durability of response was short. Median survival rates ranged between 12 and 16 months. Patients with relapsed disease may respond to L-asparaginase-containing regimens. Allogeneic hematopoietic stem cell transplantation, particularly when performed during the first remission, may produce durable remissions in selected adults. CONCLUSIONS: BPDCN is a rare aggressive disease that typically affects elderly patients. The most commonly affected nonhematopoietic organ is the skin. Although BPDCN is initially sensitive to conventional chemotherapy regimens, this response is relatively short and long-term prognosis is poor. In the near future, novel targeted therapies may improve outcomes for patients with BPDCN.


Assuntos
Células Dendríticas/patologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/terapia , Humanos
2.
Br J Haematol ; 153(5): 599-611, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21492126

RESUMO

Bcl-2 proteins represent a rheostat that controls cellular viability. Obatoclax, a BH3-mimetic, has been designed to specifically target and counteract anti-apoptotic Bcl-2 proteins. We evaluated the biological effects of obatoclax on the anti-tumour activity of rituximab and chemotherapy agents. Obatoclax induced cell death of rituximab/chemotherapy-sensitive (RSCL), -resistant cell lines (RRCL) and primary tumour-cells derived from patients with B-cell lymphomas (N=39). Obatoclax also enhanced the activity of rituximab and had synergistic activity when combined with chemotherapy agents. The ability of Obatoclax to induce PARP cleavage varied between patient samples and was not observed in some RRCL. Inhibition of caspase activity did not affect obatoclax activity, suggesting the existence of caspase-independent death pathways. Autophagy was detected by LC3 conversion and/or electron microscopy in RRCL and in patient-derived tumour cells. Moreover, obatoclax activity was inhibited by Beclin-1 knockdown. In summary, obatoclax is an active Bcl-2 inhibitor that potentiates the activity of chemotherapy agents and, to a lesser degree, rituximab. Defining the molecular events triggered by obatoclax is necessary to further its clinical development and identify potential biomarkers that are predictive of response.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linfoma de Células B/patologia , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Autofagia/efeitos dos fármacos , Caspases/fisiologia , Morte Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Indóis , Linfoma de Células B/metabolismo , Linfoma Folicular/metabolismo , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Neoplasias/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pirróis/administração & dosagem , Pirróis/farmacologia , Rituximab , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Proteína Killer-Antagonista Homóloga a bcl-2/análise , Proteína X Associada a bcl-2/análise
3.
Blood ; 116(25): 5605-14, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20930068

RESUMO

Resistance to currently available therapies is a major impediment to the successful treatment of hematological malignancies. Here, we used a model of therapy-resistant B-cell non Hodgkin lymphoma (B-NHL) developed in our laboratory along with primary B-NHL cells to study basic mechanisms of bortezomib activity. In resistant cells and a subset of primary B-NHLs, bortezomib treatment led to stabilization of Bak and subsequent Bak-dependent activation of apoptosis. In contrast to sensitive cells that die strictly by apoptosis, bortezomib was capable of killing resistant cells through activation of apoptosis or caspase-independent mechanism(s) when caspases were pharmacologically inhibited. Our data demonstrate that bortezomib is capable of killing B-NHL cells via multiple mechanisms, regardless of their basal apoptotic potential, and contributes to growing evidence that proteasome inhibitors can act via modulation of B-cell lymphoma 2 (Bcl-2) family proteins. The capacity of bortezomib to act independently of the intrinsic apoptotic threshold of a given B-NHL cell suggests that bortezomib-based therapies could potentially overcome resistance and result in relevant clinical activity in a relapsed/refractory setting.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/uso terapêutico , Western Blotting , Bortezomib , Caspases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Imunoprecipitação , Linfoma de Células B/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ubiquitinação
4.
Immunol Res ; 46(1-3): 192-205, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19763890

RESUMO

Rituximab is a chimeric monoclonal anti-CD20 antibody and was the first monoclonal antibody (mAb) therapy approved by FDA (Food and Drug Administration) for the treatment of B-cell lymphoma. It has revolutionized the treatment of patients with CD20-positive non-Hodgkin's lymphoma and CLL. Rituximab is currently being used in virtually all patients with B-cell lymphomas either alone or in combination with chemotherapy. Despite its excellent safety and efficacy profile, only a small portion of B-cell lymphoma patients treated with rituximab as a single agent have sustained complete remissions. Combining rituximab with standard chemotherapy regimens is associated with higher response rates, and improved survival in a subset of patients. Unfortunately, a significant percentage of patients who initially respond to rituximab eventually relapse, and there are patients that demonstrate intrinsic resistance to initial therapy. In the last decade, ongoing scientific research has led to a better understanding of rituximab-associated cytotoxic mechanisms against lymphoma target cells. Scientific efforts are increasingly being focused in developing new strategies to improve mAb activity. Various strategies include the following: combining rituximab with different biologic agents (e.g. cytokines, immunomodulatory drugs); developing novel antibody constructs (including bi-specific antibodies); and/or inhibiting signaling pathways associated with lymphomagenesis and immuno-chemotherapy resistance. In this review article, we will provide an overview of various rituximab-associated cytotoxic mechanisms and novel strategies to improve mAb activity against B-cell lymphoma.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Murinos , Quimioterapia Combinada/métodos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Linfoma não Hodgkin/imunologia , Rituximab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA